1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
/* mpi-inv.c - MPI functions
* Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include "mpi-internal.h"
#include "g10lib.h"
/*
* W = U + V when OP_ENABLED=1
* otherwise, W = U
*/
static mpi_limb_t
mpih_add_n_cond (mpi_ptr_t wp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t usize,
unsigned long op_enable)
{
mpi_size_t i;
mpi_limb_t cy;
mpi_limb_t mask = ((mpi_limb_t)0) - op_enable;
cy = 0;
for (i = 0; i < usize; i++)
{
mpi_limb_t x = up[i] + (vp[i] & mask);
mpi_limb_t cy1 = x < up[i];
mpi_limb_t cy2;
x = x + cy;
cy2 = x < cy;
cy = cy1 | cy2;
wp[i] = x;
}
return cy;
}
/*
* W = U - V when OP_ENABLED=1
* otherwise, W = U
*/
static mpi_limb_t
mpih_sub_n_cond (mpi_ptr_t wp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t usize,
unsigned long op_enable)
{
mpi_size_t i;
mpi_limb_t cy;
mpi_limb_t mask = ((mpi_limb_t)0) - op_enable;
cy = 0;
for (i = 0; i < usize; i++)
{
mpi_limb_t x = up[i] - (vp[i] & mask);
mpi_limb_t cy1 = x > up[i];
mpi_limb_t cy2;
cy2 = x < cy;
x = x - cy;
cy = cy1 | cy2;
wp[i] = x;
}
return cy;
}
/*
* Swap value of U and V when OP_ENABLED=1
* otherwise, no change
*/
static void
mpih_swap_cond (mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t usize,
unsigned long op_enable)
{
mpi_size_t i;
mpi_limb_t mask = ((mpi_limb_t)0) - op_enable;
for (i = 0; i < usize; i++)
{
mpi_limb_t x = mask & (up[i] ^ vp[i]);
up[i] = up[i] ^ x;
vp[i] = vp[i] ^ x;
}
}
/*
* W = -U when OP_ENABLED=1
* otherwise, W = U
*/
static void
mpih_abs_cond (mpi_limb_t *wp, const mpi_limb_t *up, mpi_size_t usize,
unsigned long op_enable)
{
mpi_size_t i;
mpi_limb_t mask = ((mpi_limb_t)0) - op_enable;
mpi_limb_t cy = op_enable;
for (i = 0; i < usize; i++)
{
mpi_limb_t x = ~up[i] + cy;
cy = (x < ~up[i]);
wp[i] = up[i] ^ (mask & (x ^ up[i]));
}
}
/*
* This uses a modular inversion algorithm designed by Niels Möller
* which was implemented in Nettle. The same algorithm was later also
* adapted to GMP in mpn_sec_invert.
*
* For the description of the algorithm, see Algorithm 5 in Appendix A
* of "Fast Software Polynomial Multiplication on ARM Processors using
* the NEON Engine" by Danilo Câmara, Conrado P. L. Gouvêa, Julio
* López, and Ricardo Dahab:
* https://hal.inria.fr/hal-01506572/document
*
* Note that in the reference above, at the line 2 of Algorithm 5,
* initial value of V was described as V:=1 wrongly. It must be V:=0.
*/
static int
mpi_invm_odd (gcry_mpi_t x, gcry_mpi_t a_orig, gcry_mpi_t n)
{
mpi_size_t nsize;
gcry_mpi_t a, b, n1h;
gcry_mpi_t u;
unsigned int iterations;
mpi_ptr_t ap, bp, n1hp;
mpi_ptr_t up, vp;
int is_gcd_one;
nsize = n->nlimbs;
a = mpi_copy (a_orig);
mpi_resize (a, nsize);
ap = a->d;
b = mpi_copy (n);
bp = b->d;
u = mpi_alloc_set_ui (1);
mpi_resize (u, nsize);
up = u->d;
mpi_resize (x, nsize);
x->nlimbs = nsize;
vp = x->d;
memset (vp, 0, nsize * BYTES_PER_MPI_LIMB);
n1h = mpi_copy (n);
mpi_rshift (n1h, n1h, 1);
mpi_add_ui (n1h, n1h, 1);
mpi_resize (n1h, nsize);
n1hp = n1h->d;
iterations = 2 * nsize * BITS_PER_MPI_LIMB;
while (iterations-- > 0)
{
mpi_limb_t odd_a, odd_u, underflow, borrow;
odd_a = ap[0] & 1;
underflow = mpih_sub_n_cond (ap, ap, bp, nsize, odd_a);
mpih_add_n_cond (bp, bp, ap, nsize, underflow);
mpih_abs_cond (ap, ap, nsize, underflow);
mpih_swap_cond (up, vp, nsize, underflow);
_gcry_mpih_rshift (ap, ap, nsize, 1);
borrow = mpih_sub_n_cond (up, up, vp, nsize, odd_a);
mpih_add_n_cond (up, up, n->d, nsize, borrow);
odd_u = _gcry_mpih_rshift (up, up, nsize, 1) != 0;
mpih_add_n_cond (up, up, n1hp, nsize, odd_u);
}
is_gcd_one = (mpi_cmp_ui (b, 1) == 0);
mpi_free (n1h);
mpi_free (u);
mpi_free (b);
mpi_free (a);
return is_gcd_one;
}
/****************
* Calculate the multiplicative inverse X of A mod N
* That is: Find the solution x for
* 1 = (a*x) mod n
*/
static int
mpi_invm_generic (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t n)
{
int is_gcd_one;
#if 0
/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X) */
gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
u = mpi_copy(a);
v = mpi_copy(n);
u1 = mpi_alloc_set_ui(1);
u2 = mpi_alloc_set_ui(0);
u3 = mpi_copy(u);
v1 = mpi_alloc_set_ui(0);
v2 = mpi_alloc_set_ui(1);
v3 = mpi_copy(v);
q = mpi_alloc( mpi_get_nlimbs(u)+1 );
t1 = mpi_alloc( mpi_get_nlimbs(u)+1 );
t2 = mpi_alloc( mpi_get_nlimbs(u)+1 );
t3 = mpi_alloc( mpi_get_nlimbs(u)+1 );
while( mpi_cmp_ui( v3, 0 ) ) {
mpi_fdiv_q( q, u3, v3 );
mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q);
mpi_sub(t1, u1, t1); mpi_sub(t2, u2, t2); mpi_sub(t3, u3, t3);
mpi_set(u1, v1); mpi_set(u2, v2); mpi_set(u3, v3);
mpi_set(v1, t1); mpi_set(v2, t2); mpi_set(v3, t3);
}
/* log_debug("result:\n");
log_mpidump("q =", q );
log_mpidump("u1=", u1);
log_mpidump("u2=", u2);
log_mpidump("u3=", u3);
log_mpidump("v1=", v1);
log_mpidump("v2=", v2); */
mpi_set(x, u1);
is_gcd_one = (mpi_cmp_ui (u3, 1) == 0);
mpi_free(u1);
mpi_free(u2);
mpi_free(u3);
mpi_free(v1);
mpi_free(v2);
mpi_free(v3);
mpi_free(q);
mpi_free(t1);
mpi_free(t2);
mpi_free(t3);
mpi_free(u);
mpi_free(v);
#elif 0
/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
* modified according to Michael Penk's solution for Exercise 35
* (in the first edition)
* In the third edition, it's Exercise 39, and it is described in
* page 646 of ANSWERS TO EXERCISES chapter.
*/
/* FIXME: we can simplify this in most cases (see Knuth) */
gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
unsigned k;
int sign;
u = mpi_copy(a);
v = mpi_copy(n);
for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
mpi_rshift(u, u, 1);
mpi_rshift(v, v, 1);
}
u1 = mpi_alloc_set_ui(1);
u2 = mpi_alloc_set_ui(0);
u3 = mpi_copy(u);
v1 = mpi_copy(v); /* !-- used as const 1 */
v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u );
v3 = mpi_copy(v);
if( mpi_test_bit(u, 0) ) { /* u is odd */
t1 = mpi_alloc_set_ui(0);
t2 = mpi_alloc_set_ui(1); t2->sign = 1;
t3 = mpi_copy(v); t3->sign = !t3->sign;
goto Y4;
}
else {
t1 = mpi_alloc_set_ui(1);
t2 = mpi_alloc_set_ui(0);
t3 = mpi_copy(u);
}
do {
do {
if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
mpi_add(t1, t1, v);
mpi_sub(t2, t2, u);
}
mpi_rshift(t1, t1, 1);
mpi_rshift(t2, t2, 1);
mpi_rshift(t3, t3, 1);
Y4:
;
} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
if( !t3->sign ) {
mpi_set(u1, t1);
mpi_set(u2, t2);
mpi_set(u3, t3);
}
else {
mpi_sub(v1, v, t1);
sign = u->sign; u->sign = !u->sign;
mpi_sub(v2, u, t2);
u->sign = sign;
sign = t3->sign; t3->sign = !t3->sign;
mpi_set(v3, t3);
t3->sign = sign;
}
mpi_sub(t1, u1, v1);
mpi_sub(t2, u2, v2);
mpi_sub(t3, u3, v3);
if( t1->sign ) {
mpi_add(t1, t1, v);
mpi_sub(t2, t2, u);
}
} while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
/* mpi_lshift( u3, u3, k ); */
is_gcd_one = (k == 0 && mpi_cmp_ui (u3, 1) == 0);
mpi_set(x, u1);
mpi_free(u1);
mpi_free(u2);
mpi_free(u3);
mpi_free(v1);
mpi_free(v2);
mpi_free(v3);
mpi_free(t1);
mpi_free(t2);
mpi_free(t3);
#else
/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
* modified according to Michael Penk's solution for Exercise 35
* with further enhancement */
/* The reference in the comment above is for the first edition.
* In the third edition, it's Exercise 39, and it is described in
* page 646 of ANSWERS TO EXERCISES chapter.
*/
gcry_mpi_t u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3;
unsigned k;
int sign;
int odd ;
u = mpi_copy(a);
v = mpi_copy(n);
for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
mpi_rshift(u, u, 1);
mpi_rshift(v, v, 1);
}
odd = mpi_test_bit(v,0);
u1 = mpi_alloc_set_ui(1);
if( !odd )
u2 = mpi_alloc_set_ui(0);
u3 = mpi_copy(u);
v1 = mpi_copy(v);
if( !odd ) {
v2 = mpi_alloc( mpi_get_nlimbs(u) );
mpi_sub( v2, u1, u ); /* U is used as const 1 */
}
v3 = mpi_copy(v);
if( mpi_test_bit(u, 0) ) { /* u is odd */
t1 = mpi_alloc_set_ui(0);
if( !odd ) {
t2 = mpi_alloc_set_ui(1); t2->sign = 1;
}
t3 = mpi_copy(v); t3->sign = !t3->sign;
goto Y4;
}
else {
t1 = mpi_alloc_set_ui(1);
if( !odd )
t2 = mpi_alloc_set_ui(0);
t3 = mpi_copy(u);
}
do {
do {
if( !odd ) {
if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
mpi_add(t1, t1, v);
mpi_sub(t2, t2, u);
}
mpi_rshift(t1, t1, 1);
mpi_rshift(t2, t2, 1);
mpi_rshift(t3, t3, 1);
}
else {
if( mpi_test_bit(t1, 0) )
mpi_add(t1, t1, v);
mpi_rshift(t1, t1, 1);
mpi_rshift(t3, t3, 1);
}
Y4:
;
} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
if( !t3->sign ) {
mpi_set(u1, t1);
if( !odd )
mpi_set(u2, t2);
mpi_set(u3, t3);
}
else {
mpi_sub(v1, v, t1);
sign = u->sign; u->sign = !u->sign;
if( !odd )
mpi_sub(v2, u, t2);
u->sign = sign;
sign = t3->sign; t3->sign = !t3->sign;
mpi_set(v3, t3);
t3->sign = sign;
}
mpi_sub(t1, u1, v1);
if( !odd )
mpi_sub(t2, u2, v2);
mpi_sub(t3, u3, v3);
if( t1->sign ) {
mpi_add(t1, t1, v);
if( !odd )
mpi_sub(t2, t2, u);
}
} while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
/* mpi_lshift( u3, u3, k ); */
is_gcd_one = (k == 0 && mpi_cmp_ui (u3, 1) == 0);
mpi_set(x, u1);
mpi_free(u1);
mpi_free(v1);
mpi_free(t1);
if( !odd ) {
mpi_free(u2);
mpi_free(v2);
mpi_free(t2);
}
mpi_free(u3);
mpi_free(v3);
mpi_free(t3);
mpi_free(u);
mpi_free(v);
#endif
return is_gcd_one;
}
/*
* Set X to the multiplicative inverse of A mod M. Return true if the
* inverse exists.
*/
int
_gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t n)
{
if (!mpi_cmp_ui (a, 0))
return 0; /* Inverse does not exists. */
if (!mpi_cmp_ui (n, 1))
return 0; /* Inverse does not exists. */
if (mpi_test_bit (n, 0) && mpi_cmp (a, n) < 0)
return mpi_invm_odd (x, a, n);
else
return mpi_invm_generic (x, a, n);
}
|