/* sha512.c - SHA384 and SHA512 hash functions
* Copyright (C) 2003, 2008, 2009 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Test vectors from FIPS-180-2:
*
* "abc"
* 384:
* CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163
* 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7
* 512:
* DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A
* 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F
*
* "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
* 384:
* 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2
* 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039
* 512:
* 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018
* 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909
*
* "a" x 1000000
* 384:
* 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852
* 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985
* 512:
* E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB
* DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B
*/
#include <config.h>
#include <string.h>
#include "g10lib.h"
#include "bithelp.h"
#include "bufhelp.h"
#include "cipher.h"
#include "hash-common.h"
/* USE_ARM_NEON_ASM indicates whether to enable ARM NEON assembly code. */
#undef USE_ARM_NEON_ASM
#ifdef ENABLE_NEON_SUPPORT
# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
&& defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
&& defined(HAVE_GCC_INLINE_ASM_NEON)
# define USE_ARM_NEON_ASM 1
# endif
#endif /*ENABLE_NEON_SUPPORT*/
/* USE_ARM_ASM indicates whether to enable ARM assembly code. */
#undef USE_ARM_ASM
#if defined(__ARMEL__) && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS)
# define USE_ARM_ASM 1
#endif
/* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */
#undef USE_SSSE3
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_SSSE3 1
#endif
/* USE_AVX indicates whether to compile with Intel AVX code. */
#undef USE_AVX
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX 1
#endif
/* USE_AVX2 indicates whether to compile with Intel AVX2/rorx code. */
#undef USE_AVX2
#if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX2) && \
defined(HAVE_GCC_INLINE_ASM_BMI2) && \
defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
# define USE_AVX2 1
#endif
typedef struct
{
u64 h0, h1, h2, h3, h4, h5, h6, h7;
} SHA512_STATE;
typedef struct
{
gcry_md_block_ctx_t bctx;
SHA512_STATE state;
#ifdef USE_ARM_NEON_ASM
unsigned int use_neon:1;
#endif
#ifdef USE_SSSE3
unsigned int use_ssse3:1;
#endif
#ifdef USE_AVX
unsigned int use_avx:1;
#endif
#ifdef USE_AVX2
unsigned int use_avx2:1;
#endif
} SHA512_CONTEXT;
static unsigned int
transform (void *context, const unsigned char *data, size_t nblks);
static void
sha512_init (void *context, unsigned int flags)
{
SHA512_CONTEXT *ctx = context;
SHA512_STATE *hd = &ctx->state;
unsigned int features = _gcry_get_hw_features ();
(void)flags;
hd->h0 = U64_C(0x6a09e667f3bcc908);
hd->h1 = U64_C(0xbb67ae8584caa73b);
hd->h2 = U64_C(0x3c6ef372fe94f82b);
hd->h3 = U64_C(0xa54ff53a5f1d36f1);
hd->h4 = U64_C(0x510e527fade682d1);
hd->h5 = U64_C(0x9b05688c2b3e6c1f);
hd->h6 = U64_C(0x1f83d9abfb41bd6b);
hd->h7 = U64_C(0x5be0cd19137e2179);
ctx->bctx.nblocks = 0;
ctx->bctx.nblocks_high = 0;
ctx->bctx.count = 0;
ctx->bctx.blocksize = 128;
ctx->bctx.bwrite = transform;
#ifdef USE_ARM_NEON_ASM
ctx->use_neon = (features & HWF_ARM_NEON) != 0;
#endif
#ifdef USE_SSSE3
ctx->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0;
#endif
#ifdef USE_AVX
ctx->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD);
#endif
#ifdef USE_AVX2
ctx->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2);
#endif
(void)features;
}
static void
sha384_init (void *context, unsigned int flags)
{
SHA512_CONTEXT *ctx = context;
SHA512_STATE *hd = &ctx->state;
unsigned int features = _gcry_get_hw_features ();
(void)flags;
hd->h0 = U64_C(0xcbbb9d5dc1059ed8);
hd->h1 = U64_C(0x629a292a367cd507);
hd->h2 = U64_C(0x9159015a3070dd17);
hd->h3 = U64_C(0x152fecd8f70e5939);
hd->h4 = U64_C(0x67332667ffc00b31);
hd->h5 = U64_C(0x8eb44a8768581511);
hd->h6 = U64_C(0xdb0c2e0d64f98fa7);
hd->h7 = U64_C(0x47b5481dbefa4fa4);
ctx->bctx.nblocks = 0;
ctx->bctx.nblocks_high = 0;
ctx->bctx.count = 0;
ctx->bctx.blocksize = 128;
ctx->bctx.bwrite = transform;
#ifdef USE_ARM_NEON_ASM
ctx->use_neon = (features & HWF_ARM_NEON) != 0;
#endif
#ifdef USE_SSSE3
ctx->use_ssse3 = (features & HWF_INTEL_SSSE3) != 0;
#endif
#ifdef USE_AVX
ctx->use_avx = (features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD);
#endif
#ifdef USE_AVX2
ctx->use_avx2 = (features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2);
#endif
(void)features;
}
static const u64 k[] =
{
U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd),
U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc),
U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019),
U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118),
U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe),
U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2),
U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1),
U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694),
U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3),
U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65),
U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483),
U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5),
U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210),
U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4),
U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725),
U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70),
U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926),
U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df),
U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8),
U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b),
U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001),
U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30),
U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910),
U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8),
U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53),
U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8),
U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb),
U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3),
U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60),
U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec),
U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9),
U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b),
U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207),
U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178),
U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6),
U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b),
U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493),
U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c),
U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a),
U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817)
};
#ifndef USE_ARM_ASM
static inline u64
ROTR (u64 x, u64 n)
{
return ((x >> n) | (x << (64 - n)));
}
static inline u64
Ch (u64 x, u64 y, u64 z)
{
return ((x & y) ^ ( ~x & z));
}
static inline u64
Maj (u64 x, u64 y, u64 z)
{
return ((x & y) ^ (x & z) ^ (y & z));
}
static inline u64
Sum0 (u64 x)
{
return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39));
}
static inline u64
Sum1 (u64 x)
{
return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41));
}
/****************
* Transform the message W which consists of 16 64-bit-words
*/
static unsigned int
transform_blk (SHA512_STATE *hd, const unsigned char *data)
{
u64 a, b, c, d, e, f, g, h;
u64 w[16];
int t;
/* get values from the chaining vars */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
for ( t = 0; t < 16; t++ )
w[t] = buf_get_be64(data + t * 8);
#define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
#define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
for (t = 0; t < 80 - 16; )
{
u64 t1, t2;
/* Performance on a AMD Athlon(tm) Dual Core Processor 4050e
with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes
initialized to 0,1,2,3...255,0,... and 1000 iterations:
Not unrolled with macros: 440ms
Unrolled with macros: 350ms
Unrolled with inline: 330ms
*/
#if 0 /* Not unrolled. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t%16];
w[t%16] += S1 (w[(t - 2)%16]) + w[(t - 7)%16] + S0 (w[(t - 15)%16]);
t2 = Sum0 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
t++;
#else /* Unrolled to interweave the chain variables. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[0];
w[0] += S1 (w[14]) + w[9] + S0 (w[1]);
t2 = Sum0 (a) + Maj (a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[1];
w[1] += S1 (w[15]) + w[10] + S0 (w[2]);
t2 = Sum0 (h) + Maj (h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[2];
w[2] += S1 (w[0]) + w[11] + S0 (w[3]);
t2 = Sum0 (g) + Maj (g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[3];
w[3] += S1 (w[1]) + w[12] + S0 (w[4]);
t2 = Sum0 (f) + Maj (f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[4];
w[4] += S1 (w[2]) + w[13] + S0 (w[5]);
t2 = Sum0 (e) + Maj (e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[5];
w[5] += S1 (w[3]) + w[14] + S0 (w[6]);
t2 = Sum0 (d) + Maj (d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[6];
w[6] += S1 (w[4]) + w[15] + S0 (w[7]);
t2 = Sum0 (c) + Maj (c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[7];
w[7] += S1 (w[5]) + w[0] + S0 (w[8]);
t2 = Sum0 (b) + Maj (b, c, d);
e += t1;
a = t1 + t2;
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t+8] + w[8];
w[8] += S1 (w[6]) + w[1] + S0 (w[9]);
t2 = Sum0 (a) + Maj (a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+9] + w[9];
w[9] += S1 (w[7]) + w[2] + S0 (w[10]);
t2 = Sum0 (h) + Maj (h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+10] + w[10];
w[10] += S1 (w[8]) + w[3] + S0 (w[11]);
t2 = Sum0 (g) + Maj (g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+11] + w[11];
w[11] += S1 (w[9]) + w[4] + S0 (w[12]);
t2 = Sum0 (f) + Maj (f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+12] + w[12];
w[12] += S1 (w[10]) + w[5] + S0 (w[13]);
t2 = Sum0 (e) + Maj (e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+13] + w[13];
w[13] += S1 (w[11]) + w[6] + S0 (w[14]);
t2 = Sum0 (d) + Maj (d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+14] + w[14];
w[14] += S1 (w[12]) + w[7] + S0 (w[15]);
t2 = Sum0 (c) + Maj (c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+15] + w[15];
w[15] += S1 (w[13]) + w[8] + S0 (w[0]);
t2 = Sum0 (b) + Maj (b, c, d);
e += t1;
a = t1 + t2;
t += 16;
#endif
}
for (; t < 80; )
{
u64 t1, t2;
#if 0 /* Not unrolled. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t%16];
t2 = Sum0 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
t++;
#else /* Unrolled to interweave the chain variables. */
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[0];
t2 = Sum0 (a) + Maj (a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[1];
t2 = Sum0 (h) + Maj (h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[2];
t2 = Sum0 (g) + Maj (g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[3];
t2 = Sum0 (f) + Maj (f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[4];
t2 = Sum0 (e) + Maj (e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[5];
t2 = Sum0 (d) + Maj (d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[6];
t2 = Sum0 (c) + Maj (c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[7];
t2 = Sum0 (b) + Maj (b, c, d);
e += t1;
a = t1 + t2;
t1 = h + Sum1 (e) + Ch (e, f, g) + k[t+8] + w[8];
t2 = Sum0 (a) + Maj (a, b, c);
d += t1;
h = t1 + t2;
t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+9] + w[9];
t2 = Sum0 (h) + Maj (h, a, b);
c += t1;
g = t1 + t2;
t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+10] + w[10];
t2 = Sum0 (g) + Maj (g, h, a);
b += t1;
f = t1 + t2;
t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+11] + w[11];
t2 = Sum0 (f) + Maj (f, g, h);
a += t1;
e = t1 + t2;
t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+12] + w[12];
t2 = Sum0 (e) + Maj (e, f, g);
h += t1;
d = t1 + t2;
t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+13] + w[13];
t2 = Sum0 (d) + Maj (d, e, f);
g += t1;
c = t1 + t2;
t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+14] + w[14];
t2 = Sum0 (c) + Maj (c, d, e);
f += t1;
b = t1 + t2;
t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+15] + w[15];
t2 = Sum0 (b) + Maj (b, c, d);
e += t1;
a = t1 + t2;
t += 16;
#endif
}
/* Update chaining vars. */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
return /* burn_stack */ (8 + 16) * sizeof(u64) + sizeof(u32) +
3 * sizeof(void*);
}
#endif /*!USE_ARM_ASM*/
/* AMD64 assembly implementations use SystemV ABI, ABI conversion and additional
* stack to store XMM6-XMM15 needed on Win64. */
#undef ASM_FUNC_ABI
#undef ASM_EXTRA_STACK
#if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_AVX2)
# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
# define ASM_FUNC_ABI __attribute__((sysv_abi))
# define ASM_EXTRA_STACK (10 * 16)
# else
# define ASM_FUNC_ABI
# define ASM_EXTRA_STACK 0
# endif
#endif
#ifdef USE_ARM_NEON_ASM
void _gcry_sha512_transform_armv7_neon (SHA512_STATE *hd,
const unsigned char *data,
const u64 k[], size_t num_blks);
#endif
#ifdef USE_ARM_ASM
unsigned int _gcry_sha512_transform_arm (SHA512_STATE *hd,
const unsigned char *data,
const u64 k[], size_t num_blks);
#endif
#ifdef USE_SSSE3
unsigned int _gcry_sha512_transform_amd64_ssse3(const void *input_data,
void *state,
size_t num_blks) ASM_FUNC_ABI;
#endif
#ifdef USE_AVX
unsigned int _gcry_sha512_transform_amd64_avx(const void *input_data,
void *state,
size_t num_blks) ASM_FUNC_ABI;
#endif
#ifdef USE_AVX2
unsigned int _gcry_sha512_transform_amd64_avx2(const void *input_data,
void *state,
size_t num_blks) ASM_FUNC_ABI;
#endif
static unsigned int
transform (void *context, const unsigned char *data, size_t nblks)
{
SHA512_CONTEXT *ctx = context;
unsigned int burn;
#ifdef USE_AVX2
if (ctx->use_avx2)
return _gcry_sha512_transform_amd64_avx2 (data, &ctx->state, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_AVX
if (ctx->use_avx)
return _gcry_sha512_transform_amd64_avx (data, &ctx->state, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_SSSE3
if (ctx->use_ssse3)
return _gcry_sha512_transform_amd64_ssse3 (data, &ctx->state, nblks)
+ 4 * sizeof(void*) + ASM_EXTRA_STACK;
#endif
#ifdef USE_ARM_NEON_ASM
if (ctx->use_neon)
{
_gcry_sha512_transform_armv7_neon (&ctx->state, data, k, nblks);
/* _gcry_sha512_transform_armv7_neon does not store sensitive data
* to stack. */
return /* no burn_stack */ 0;
}
#endif
#ifdef USE_ARM_ASM
burn = _gcry_sha512_transform_arm (&ctx->state, data, k, nblks);
#else
do
{
burn = transform_blk (&ctx->state, data) + 3 * sizeof(void*);
data += 128;
}
while (--nblks);
#ifdef ASM_EXTRA_STACK
/* 'transform_blk' is typically inlined and XMM6-XMM15 are stored at
* the prologue of this function. Therefore need to add ASM_EXTRA_STACK to
* here too.
*/
burn += ASM_EXTRA_STACK;
#endif
#endif
return burn;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 64 bytes representing the digest. When used for sha384,
* we take the leftmost 48 of those bytes.
*/
static void
sha512_final (void *context)
{
SHA512_CONTEXT *hd = context;
unsigned int stack_burn_depth;
u64 t, th, msb, lsb;
byte *p;
_gcry_md_block_write (context, NULL, 0); /* flush */ ;
t = hd->bctx.nblocks;
/* if (sizeof t == sizeof hd->bctx.nblocks) */
th = hd->bctx.nblocks_high;
/* else */
/* th = hd->bctx.nblocks >> 64; In case we ever use u128 */
/* multiply by 128 to make a byte count */
lsb = t << 7;
msb = (th << 7) | (t >> 57);
/* add the count */
t = lsb;
if ((lsb += hd->bctx.count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 61;
if (hd->bctx.count < 112)
{ /* enough room */
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */
while (hd->bctx.count < 112)
hd->bctx.buf[hd->bctx.count++] = 0; /* pad */
}
else
{ /* need one extra block */
hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */
while (hd->bctx.count < 128)
hd->bctx.buf[hd->bctx.count++] = 0;
_gcry_md_block_write (context, NULL, 0); /* flush */ ;
memset (hd->bctx.buf, 0, 112); /* fill next block with zeroes */
}
/* append the 128 bit count */
buf_put_be64(hd->bctx.buf + 112, msb);
buf_put_be64(hd->bctx.buf + 120, lsb);
stack_burn_depth = transform (hd, hd->bctx.buf, 1);
_gcry_burn_stack (stack_burn_depth);
p = hd->bctx.buf;
#define X(a) do { buf_put_be64(p, hd->state.h##a); p += 8; } while (0)
X (0);
X (1);
X (2);
X (3);
X (4);
X (5);
/* Note that these last two chunks are included even for SHA384.
We just ignore them. */
X (6);
X (7);
#undef X
}
static byte *
sha512_read (void *context)
{
SHA512_CONTEXT *hd = (SHA512_CONTEXT *) context;
return hd->bctx.buf;
}
/* Shortcut functions which puts the hash value of the supplied buffer
* into outbuf which must have a size of 64 bytes. */
void
_gcry_sha512_hash_buffer (void *outbuf, const void *buffer, size_t length)
{
SHA512_CONTEXT hd;
sha512_init (&hd, 0);
_gcry_md_block_write (&hd, buffer, length);
sha512_final (&hd);
memcpy (outbuf, hd.bctx.buf, 64);
}
/* Variant of the above shortcut function using multiple buffers. */
void
_gcry_sha512_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt)
{
SHA512_CONTEXT hd;
sha512_init (&hd, 0);
for (;iovcnt > 0; iov++, iovcnt--)
_gcry_md_block_write (&hd,
(const char*)iov[0].data + iov[0].off, iov[0].len);
sha512_final (&hd);
memcpy (outbuf, hd.bctx.buf, 64);
}
/*
Self-test section.
*/
static gpg_err_code_t
selftests_sha384 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA384, 0,
"abc", 3,
"\xcb\x00\x75\x3f\x45\xa3\x5e\x8b\xb5\xa0\x3d\x69\x9a\xc6\x50\x07"
"\x27\x2c\x32\xab\x0e\xde\xd1\x63\x1a\x8b\x60\x5a\x43\xff\x5b\xed"
"\x80\x86\x07\x2b\xa1\xe7\xcc\x23\x58\xba\xec\xa1\x34\xc8\x25\xa7", 48);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA384, 0,
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 112,
"\x09\x33\x0C\x33\xF7\x11\x47\xE8\x3D\x19\x2F\xC7\x82\xCD\x1B\x47"
"\x53\x11\x1B\x17\x3B\x3B\x05\xD2\x2F\xA0\x80\x86\xE3\xB0\xF7\x12"
"\xFC\xC7\xC7\x1A\x55\x7E\x2D\xB9\x66\xC3\xE9\xFA\x91\x74\x60\x39",
48);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA384, 1,
NULL, 0,
"\x9D\x0E\x18\x09\x71\x64\x74\xCB\x08\x6E\x83\x4E\x31\x0A\x4A\x1C"
"\xED\x14\x9E\x9C\x00\xF2\x48\x52\x79\x72\xCE\xC5\x70\x4C\x2A\x5B"
"\x07\xB8\xB3\xDC\x38\xEC\xC4\xEB\xAE\x97\xDD\xD8\x7F\x3D\x89\x85",
48);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA384, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
static gpg_err_code_t
selftests_sha512 (int extended, selftest_report_func_t report)
{
const char *what;
const char *errtxt;
what = "short string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA512, 0,
"abc", 3,
"\xDD\xAF\x35\xA1\x93\x61\x7A\xBA\xCC\x41\x73\x49\xAE\x20\x41\x31"
"\x12\xE6\xFA\x4E\x89\xA9\x7E\xA2\x0A\x9E\xEE\xE6\x4B\x55\xD3\x9A"
"\x21\x92\x99\x2A\x27\x4F\xC1\xA8\x36\xBA\x3C\x23\xA3\xFE\xEB\xBD"
"\x45\x4D\x44\x23\x64\x3C\xE8\x0E\x2A\x9A\xC9\x4F\xA5\x4C\xA4\x9F", 64);
if (errtxt)
goto failed;
if (extended)
{
what = "long string";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA512, 0,
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 112,
"\x8E\x95\x9B\x75\xDA\xE3\x13\xDA\x8C\xF4\xF7\x28\x14\xFC\x14\x3F"
"\x8F\x77\x79\xC6\xEB\x9F\x7F\xA1\x72\x99\xAE\xAD\xB6\x88\x90\x18"
"\x50\x1D\x28\x9E\x49\x00\xF7\xE4\x33\x1B\x99\xDE\xC4\xB5\x43\x3A"
"\xC7\xD3\x29\xEE\xB6\xDD\x26\x54\x5E\x96\xE5\x5B\x87\x4B\xE9\x09",
64);
if (errtxt)
goto failed;
what = "one million \"a\"";
errtxt = _gcry_hash_selftest_check_one
(GCRY_MD_SHA512, 1,
NULL, 0,
"\xE7\x18\x48\x3D\x0C\xE7\x69\x64\x4E\x2E\x42\xC7\xBC\x15\xB4\x63"
"\x8E\x1F\x98\xB1\x3B\x20\x44\x28\x56\x32\xA8\x03\xAF\xA9\x73\xEB"
"\xDE\x0F\xF2\x44\x87\x7E\xA6\x0A\x4C\xB0\x43\x2C\xE5\x77\xC3\x1B"
"\xEB\x00\x9C\x5C\x2C\x49\xAA\x2E\x4E\xAD\xB2\x17\xAD\x8C\xC0\x9B",
64);
if (errtxt)
goto failed;
}
return 0; /* Succeeded. */
failed:
if (report)
report ("digest", GCRY_MD_SHA512, what, errtxt);
return GPG_ERR_SELFTEST_FAILED;
}
/* Run a full self-test for ALGO and return 0 on success. */
static gpg_err_code_t
run_selftests (int algo, int extended, selftest_report_func_t report)
{
gpg_err_code_t ec;
switch (algo)
{
case GCRY_MD_SHA384:
ec = selftests_sha384 (extended, report);
break;
case GCRY_MD_SHA512:
ec = selftests_sha512 (extended, report);
break;
default:
ec = GPG_ERR_DIGEST_ALGO;
break;
}
return ec;
}
static byte sha512_asn[] = /* Object ID is 2.16.840.1.101.3.4.2.3 */
{
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
};
static gcry_md_oid_spec_t oid_spec_sha512[] =
{
{ "2.16.840.1.101.3.4.2.3" },
/* PKCS#1 sha512WithRSAEncryption */
{ "1.2.840.113549.1.1.13" },
{ NULL }
};
gcry_md_spec_t _gcry_digest_spec_sha512 =
{
GCRY_MD_SHA512, {0, 1},
"SHA512", sha512_asn, DIM (sha512_asn), oid_spec_sha512, 64,
sha512_init, _gcry_md_block_write, sha512_final, sha512_read, NULL,
sizeof (SHA512_CONTEXT),
run_selftests
};
static byte sha384_asn[] = /* Object ID is 2.16.840.1.101.3.4.2.2 */
{
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
0x00, 0x04, 0x30
};
static gcry_md_oid_spec_t oid_spec_sha384[] =
{
{ "2.16.840.1.101.3.4.2.2" },
/* PKCS#1 sha384WithRSAEncryption */
{ "1.2.840.113549.1.1.12" },
/* SHA384WithECDSA: RFC 7427 (A.3.3.) */
{ "1.2.840.10045.4.3.3" },
{ NULL },
};
gcry_md_spec_t _gcry_digest_spec_sha384 =
{
GCRY_MD_SHA384, {0, 1},
"SHA384", sha384_asn, DIM (sha384_asn), oid_spec_sha384, 48,
sha384_init, _gcry_md_block_write, sha512_final, sha512_read, NULL,
sizeof (SHA512_CONTEXT),
run_selftests
};